13	FOA
K,	いおと

TICAL	1000		2000			ì			i i	
	1		. 1		0 1	į.		}	1	i !
ODI	1	1			3	ŀ		ļ .		tes 1
Tr.	1					ì		i		

NEW SCHEME

Eighth Semester B.E. Degree Examination, May 2007 Electrical & Electronic Engineering Industrial Drives & Applications

Time: 3 hrs.]

[Max. Marks:100

Note: Answer any FIVE full questions.

- a. Explain dynamic braking of DC motor. Give its merits and demerits. (10 Marks)
 - b. A 220 V, 970 rpm, 100 A, dc separately excited motor has an armature resistance of 0.05 Ω. It is braked by plugging from an initial speed of 1000 rpm. Calculate
 - Resistance to be placed in armature circuit to limit braking current to twice the full load value.
 - ii) Braking torque.
 - iii) Torque when the speed falls to zero.

(10 Marks)

- 2 a. How an induction motor can be braked by regenerative approach? Explain with a neat schematic and W-T characteristic. (10 Marks)
 - b. A 3-phase, star connected 440 V, squirrel cage motor has the following equivalent circuit parameters referred to stator: $R_1 = 0.1 \ \Omega$, $R_2 = 0.1 \ \Omega$, $X_1 = X_2 = 0.4 \ \Omega$. Determine
 - i) Starting current of the motor when switched direct on line.
 - ii) The stator current at the start of reverse current braking assuming slip to be 4%.

 (10 Marks)
- a. Obtain an expression for the temperature rise of an electric motor due to heating.

 Draw a typical heating curve. (10 Marks)
 - b. The 15 minute rating of a motor used in domestic mixer is 400 W. If the heating time constant is 60 min, determine the continuous rating. Assume that the maximum efficiency of motor occurs at 80% of full load. (10 Marks)
- a. Develop an expression to determine power rating of electric motor using the method of equivalent current for variable load conditions. (10 Marks)
 - A horizontal conveyor belt moving at a uniform velocity of 1 m/s transports load at the rate of 50000 kg/hr. The belt is 180 m long and is driven by a 960 rpm motor.
 Determine the equivalent rotational inertia at the motor shaft. (10 Marks)
- 5 a. Derive an expression for the equivalent load torque and equivalent moment of inertia as referred to motor shaft of a motor-load combination where the load is fed through a gear system. (10 Marks)

5 b. In the mechanism shown, the motor drives the winch drum through 10:1 reduction gear. Assuming that the shaft and cable are non elastic, calculate the equivalent inertia of the motor and mechanism referred to motor shaft. (10 Marks)

- a. Describe briefly the process involved in a cement factory. What are the required features of electric drives? What are the drives employed? Explain. (10 Marks)
 - b. What are the different steps followed in a textile industry? Give an account of the electric drives employed with proper reasoning. (10 Marks)
- a. Give a brief idea of simplified speed time curves for traction application. Obtain an expression for maximum speed for trapezoidal speed-time curve. (10 Marks)
 - b. A train is required to run between two stations 1.6 km apart at an average speed of 43 km/hr. The run is to be made to a simplified quadrilateral speed-time curve. If the maximum speed is to be limited to 64 km/hr, acceleration to 2 km/hr/sec and coasting and braking retardation to 0.16 and 3.2 km/hr/sec respectively, determine the duration of acceleration, coasting and braking periods. (10 Marks)
- 8 Write short notes on:
 - a. Quadrantal speed-torque diagram.
 - b. Ratings of motors.
 - c. Coefficient of adhesion.
 - d. Suitability of dc series motor for traction.

(20 Marks)
